Luteinizing hormone receptor mediates neuronal pregnenolone production via up-regulation of steroidogenic acute regulatory protein expression.
نویسندگان
چکیده
The functional consequences of luteinizing hormone/human chorionic gonadotropin signaling via neuronal luteinizing hormone/human chorionic gonadotropin receptors expressed throughout the brain remain unclear. A primary function of luteinizing hormone (LH) in the gonads is the stimulation of sex steroid production. As LH can cross the blood-brain barrier, present in cerebrospinal fluid and is expressed by neuronal cells, we tested whether LH might also modulate steroid synthesis in the brain. Treatment of differentiated rat primary hippocampal neurons and human M17 neuroblastoma cells with LH (100 mIU/mL) resulted in a twofold increase in pregnenolone secretion in both cell types, suggesting an increase in P450scc-mediated cleavage of cholesterol to pregnenolone and its secretion from neurons. To explore how LH might regulate the synthesis of pregnenolone, the precursor for steroid synthesis, we treated rat primary hippocampal neurons with LH (0, 10 and 100 mIU/mL) and measured changes in the expression of LH receptor and steroidogenic acute regulatory protein (StAR). LH induced a rapid (within 30 min) increase in the expression of StAR, but induced a dose-dependent decrease in LH receptor expression. Consistent with these results, the suppression of serum LH in young rats treated with leuprolide acetate for 4 months down-regulated StAR expression, but increased LH receptor expression in the brain. Taken together, these results indicate that LH induces neuronal pregnenolone production by modulating the expression of the LH receptor, increasing mitochondrial cholesterol transport and increasing P450scc-mediated cleavage of cholesterol for pregnenolone synthesis and secretion.
منابع مشابه
Assessment of mechanisms of thyroid hormone action in mouse Leydig cells: regulation of the steroidogenic acute regulatory protein, steroidogenesis, and luteinizing hormone receptor function.
Recently, we demonstrated that triiodothyronine (T(3)) stimulated steroid hormone biosynthesis and steroidogenic acute regulatory (StAR) protein expression in mLTC-1 mouse Leydig tumor cells through the mediation of steroidogenic factor 1 (SF-1). We now report a dual response mechanism of T(3) on steroidogenesis and StAR expression, and on LH receptor (LHR) expression and binding in mLTC-1 cell...
متن کاملTracking the role of a star in the sky of the new millennium.
The steroidogenic acute regulatory protein is indispensable for the biosynthesis of steroid hormones. Steroidogenic acute regulatory protein mediates the rate-limiting step in steroidogenesis, the transfer of cholesterol from the outer mitochondrial membrane to the inner mitochondrial membrane where it is cleaved to pregnenolone. Its essential role in steroidogenesis was shown when it was disco...
متن کاملNovel Luteinizing Hormone-induced Mitochondrial Protein in MA-10 Mouse Leydig Tumor Cells CHARACTERIZATION OF THE BEROIDOGENIC ACUTE REGULATORY PROTEIN
The acute response of steroidogenic cells to trophic hormone stimulation is the mobilization of cholesterol from cellular stores to the mitochondrial outer membrane and the transfer of this cholesterol to the mitochondrial inner membrane where the first enzymatic step in steroidogenesis occurs. The transfer of cholesterol across the mitochondrial membranes is dependent upon de nouo protein synt...
متن کاملAtrazine oral exposure of peripubertal male rats downregulates steroidogenesis gene expression in Leydig cells.
In the present study, we investigated the effects of oral dosing of atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) to peripubertal male rats (50 and 200 mg/kg body weight daily from postnatal days 23-50) on ex vivo Leydig cell steroidogenesis. Leydig cells from treated rats were characterised by significant decline in mRNA transcripts of several genes responsible for steroidogenes...
متن کاملImpact of ACTH Signaling on Transcriptional Regulation of Steroidogenic Genes
The trophic peptide hormone adrenocorticotropic (ACTH) stimulates steroid hormone biosynthesis evoking both a rapid, acute response and a long-term, chronic response, via the activation of cAMP/protein kinase A (PKA) signaling. The acute response is initiated by the mobilization of cholesterol from lipid stores and its delivery to the inner mitochondrial membrane, a process that is mediated by ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurochemistry
دوره 100 5 شماره
صفحات -
تاریخ انتشار 2007